Hybrid Search for RAG: Combining BM25 and Vector Search for Better Retrieval Performance

Updated Feb 6, 2026

Introduction

Retrieval-Augmented Generation (RAG) systems have become the backbone of modern AI applications, from chatbots to question-answering systems. However, the quality of your RAG system heavily depends on one critical component: retrieval performance. If your system can’t find the right documents, even the most advanced language model will generate irrelevant or incorrect responses.

While dense vector search has dominated RAG implementations, relying solely on semantic embeddings has limitations. Enter Hybrid Search – a powerful strategy that combines the lexical matching strength of BM25 with the semantic understanding of vector search. In this guide, we’ll explore why hybrid search matters, how it works, and how to implement it effectively in production.

Key Insight: Studies show that hybrid search can improve retrieval accuracy by 20-40% compared to using vector search alone, especially for queries with specific terminology or rare terms.

Why Vector Search Alone Isn’t Enough

Vector search transforms text into high-dimensional embeddings and finds semantically similar content using cosine similarity or other distance metrics. While powerful, it has several weaknesses:

Limitation Example Impact
Rare terms Product codes, specific names (“GPT-4”, “BERT-base”) May not capture exact terminology
Exact matches Legal documents, code snippets Semantic similarity may miss precision
Acronyms “ML” vs “Machine Learning” Inconsistent embedding representations
Negation “not good” vs “good” Embeddings may be too similar
Recent vocabulary New technical terms post-training Out-of-vocabulary issues

Real-world scenario: Imagine searching for “Python 3.11 walrus operator” in documentation. A pure vector search might return general Python operator documentation, missing the specific version detail that BM25 would catch through exact term matching.

The Strengths of BM25

BM25 (Best Match 25) is a probabilistic ranking function based on term frequency and inverse document frequency. It excels at:

  • Exact keyword matching: Perfect for technical terms, product names, codes
  • Term frequency awareness: Rewards documents that mention query terms multiple times
  • Document length normalization: Prevents bias toward longer documents
  • Computational efficiency: No embedding overhead, fast indexing and retrieval

The BM25 scoring formula:

score(D,Q)=i=1nIDF(qi)f(qi,D)(k1+1)f(qi,D)+k1(1b+bDavgdl)\text{score}(D, Q) = \sum_{i=1}^{n} \text{IDF}(q_i) \cdot \frac{f(q_i, D) \cdot (k_1 + 1)}{f(q_i, D) + k_1 \cdot \left(1 – b + b \cdot \frac{|D|}{\text{avgdl}}\right)}

Where:
DD = document being scored
QQ = query with terms q1,q2,...,qnq_1, q_2, …, q_n
f(qi,D)f(q_i, D) = frequency of term qiq_i in document DD
D|D| = length of document DD (number of words)
avgdl\text{avgdl} = average document length in the corpus
k1k_1 = term frequency saturation parameter (typical: 1.2-2.0)
bb = length normalization parameter (typical: 0.75)
IDF(qi)\text{IDF}(q_i) = inverse document frequency of term qiq_i

The IDF component:

IDF(qi)=ln(Nn(qi)+0.5n(qi)+0.5+1)\text{IDF}(q_i) = \ln\left(\frac{N – n(q_i) + 0.5}{n(q_i) + 0.5} + 1\right)

Where:
NN = total number of documents
n(qi)n(q_i) = number of documents containing term qiq_i

Understanding Hybrid Search Architecture

The Core Concept

Hybrid search combines BM25 and vector search results using a weighted fusion strategy. The general workflow:

  1. Parallel retrieval: Run BM25 and vector search simultaneously
  2. Score normalization: Convert different scoring systems to comparable scales
  3. Fusion: Combine results using weighted aggregation
  4. Re-ranking: Optionally apply a cross-encoder for final ranking

Fusion Strategies

Reciprocal Rank Fusion (RRF):

RRF(d)=rR1k+r(d)\text{RRF}(d) = \sum_{r \in R} \frac{1}{k + r(d)}

Where:
dd = document being scored
RR = set of rankers (BM25, vector search)
r(d)r(d) = rank position of document dd in ranker rr
kk = constant (typically 60) to avoid division by small numbers

Weighted Sum:

score<em>hybrid(d)=αscore</em>BM25(d)+(1α)scorevector(d)\text{score}<em>{hybrid}(d) = \alpha \cdot \text{score}</em>{BM25}(d) + (1 – \alpha) \cdot \text{score}_{vector}(d)

Where:
α\alpha = weight for BM25 (0 to 1)
– Scores must be normalized to [0, 1] range first

Architecture Comparison

Approach Pros Cons Best For
Vector only Semantic understanding, handles paraphrasing Misses exact matches, computationally heavy Conceptual queries
BM25 only Fast, exact matching, no training needed No semantic understanding Keyword-specific searches
Hybrid (RRF) Balanced, rank-based (no normalization needed) Additional complexity General-purpose RAG
Hybrid (Weighted) Fine-tuned control, adjustable weights Requires score normalization Domain-specific tuning

Implementation Guide

Setting Up the Environment

First, install the necessary libraries:

# Install required packages
pip install rank-bm25 sentence-transformers chromadb numpy

Basic Hybrid Search Implementation

import numpy as np
from rank_bm25 import BM25Okapi
from sentence_transformers import SentenceTransformer
from typing import List, Tuple
import nltk
from nltk.tokenize import word_tokenize

# Download tokenizer data
nltk.download('punkt', quiet=True)

class HybridSearchEngine:
    def __init__(self, documents: List[str], alpha: float = 0.5):
        """
        Initialize hybrid search engine.

        Args:
            documents: List of document strings
            alpha: Weight for BM25 (0-1, higher = more BM25 influence)
        """
        self.documents = documents
        self.alpha = alpha

        # Initialize BM25
        tokenized_docs = [word_tokenize(doc.lower()) for doc in documents]
        self.bm25 = BM25Okapi(tokenized_docs)

        # Initialize vector search
        self.encoder = SentenceTransformer('all-MiniLM-L6-v2')
        self.doc_embeddings = self.encoder.encode(documents, convert_to_tensor=False)

    def normalize_scores(self, scores: np.ndarray) -> np.ndarray:
        """Normalize scores to [0, 1] range using min-max scaling."""
        if len(scores) == 0 or np.max(scores) == np.min(scores):
            return np.zeros_like(scores)
        return (scores - np.min(scores)) / (np.max(scores) - np.min(scores))

    def search_bm25(self, query: str, top_k: int = 10) -> Tuple[List[int], np.ndarray]:
        """Perform BM25 search and return document indices with scores."""
        tokenized_query = word_tokenize(query.lower())
        scores = self.bm25.get_scores(tokenized_query)

        # Get top-k indices
        top_indices = np.argsort(scores)[::-1][:top_k]
        top_scores = scores[top_indices]

        return top_indices.tolist(), self.normalize_scores(top_scores)

    def search_vector(self, query: str, top_k: int = 10) -> Tuple[List[int], np.ndarray]:
        """Perform vector search and return document indices with scores."""
        query_embedding = self.encoder.encode([query], convert_to_tensor=False)[0]

        # Calculate cosine similarity
        similarities = np.dot(self.doc_embeddings, query_embedding) / (
            np.linalg.norm(self.doc_embeddings, axis=1) * np.linalg.norm(query_embedding)
        )

        # Get top-k indices
        top_indices = np.argsort(similarities)[::-1][:top_k]
        top_scores = similarities[top_indices]

        return top_indices.tolist(), self.normalize_scores(top_scores)

    def hybrid_search(self, query: str, top_k: int = 10) -> List[Tuple[int, float]]:
        """Perform hybrid search using weighted combination."""
        # Get results from both methods
        bm25_indices, bm25_scores = self.search_bm25(query, top_k=top_k * 2)
        vector_indices, vector_scores = self.search_vector(query, top_k=top_k * 2)

        # Create score dictionaries
        combined_scores = {}

        # Add BM25 scores
        for idx, score in zip(bm25_indices, bm25_scores):
            combined_scores[idx] = self.alpha * score

        # Add vector scores
        for idx, score in zip(vector_indices, vector_scores):
            if idx in combined_scores:
                combined_scores[idx] += (1 - self.alpha) * score
            else:
                combined_scores[idx] = (1 - self.alpha) * score

        # Sort by combined score and return top-k
        sorted_results = sorted(combined_scores.items(), key=lambda x: x[1], reverse=True)
        return sorted_results[:top_k]

Implementing Reciprocal Rank Fusion (RRF)

class RRFHybridSearch(HybridSearchEngine):
    def __init__(self, documents: List[str], k: int = 60):
        """
        Initialize RRF-based hybrid search.

        Args:
            documents: List of document strings
            k: RRF constant (default: 60)
        """
        super().__init__(documents, alpha=0.5)  # alpha not used in RRF
        self.k = k

    def rrf_search(self, query: str, top_k: int = 10) -> List[Tuple[int, float]]:
        """Perform hybrid search using Reciprocal Rank Fusion."""
        # Get rankings from both methods (no need for normalized scores)
        bm25_indices, _ = self.search_bm25(query, top_k=top_k * 2)
        vector_indices, _ = self.search_vector(query, top_k=top_k * 2)

        # Calculate RRF scores
        rrf_scores = {}

        # BM25 contributions
        for rank, doc_idx in enumerate(bm25_indices, start=1):
            if doc_idx not in rrf_scores:
                rrf_scores[doc_idx] = 0
            rrf_scores[doc_idx] += 1 / (self.k + rank)

        # Vector search contributions
        for rank, doc_idx in enumerate(vector_indices, start=1):
            if doc_idx not in rrf_scores:
                rrf_scores[doc_idx] = 0
            rrf_scores[doc_idx] += 1 / (self.k + rank)

        # Sort and return top-k
        sorted_results = sorted(rrf_scores.items(), key=lambda x: x[1], reverse=True)
        return sorted_results[:top_k]
# Sample technical documents
documents = [
    "Python 3.11 introduced the walrus operator := for assignment expressions in conditional statements.",
    "The walrus operator allows you to assign values within expressions, making code more concise.",
    "Machine learning models require careful hyperparameter tuning for optimal performance.",
    "BERT is a transformer-based model that uses bidirectional attention mechanisms.",
    "GPT-4 represents a significant advancement in large language models with improved reasoning capabilities.",
    "Assignment expressions in Python can improve readability when used appropriately.",
    "Deep learning frameworks like PyTorch and TensorFlow enable efficient model training.",
    "Python version 3.11 offers performance improvements of up to 25% over previous versions."
]

# Initialize hybrid search
search_engine = HybridSearchEngine(documents, alpha=0.6)
rrf_engine = RRFHybridSearch(documents)

# Test query
query = "Python 3.11 walrus operator"

print("=== Weighted Hybrid Search ===")
results = search_engine.hybrid_search(query, top_k=3)
for idx, score in results:
    print(f"Score: {score:.4f} | {documents[idx]}")

print("\n=== RRF Hybrid Search ===")
rrf_results = rrf_engine.rrf_search(query, top_k=3)
for idx, score in rrf_results:
    print(f"RRF Score: {score:.4f} | {documents[idx]}")

Expected output analysis:

  • BM25 strength: Document 0 ranks highest due to exact matches for “Python”, “3.11”, and “walrus operator”
  • Vector strength: Documents 1 and 5 rank well due to semantic similarity with assignment expressions
  • Hybrid advantage: Combines both, ensuring the most relevant document (0) ranks first while capturing semantically related content

Advanced Techniques

Dynamic Weight Adjustment

Adjust alpha based on query characteristics:

import re

class AdaptiveHybridSearch(HybridSearchEngine):
    def calculate_alpha(self, query: str) -> float:
        """
        Dynamically calculate alpha based on query features.

        Returns:
            alpha: Higher values (more BM25) for technical/specific queries
        """
        # Check for technical indicators
        has_version = bool(re.search(r'\d+\.\d+', query))  # e.g., "3.11"
        has_acronym = bool(re.search(r'\b[A-Z]{2,}\b', query))  # e.g., "GPT"
        has_code = bool(re.search(r'[_:=]', query))  # Code-like symbols

        # Count technical signals
        technical_score = sum([has_version, has_acronym, has_code])

        # Map to alpha (0.3 to 0.7 range)
        # More technical → higher alpha (more BM25)
        alpha = 0.3 + (technical_score / 3) * 0.4

        return alpha

    def adaptive_search(self, query: str, top_k: int = 10) -> List[Tuple[int, float]]:
        """Perform hybrid search with adaptive weighting."""
        # Calculate query-specific alpha
        self.alpha = self.calculate_alpha(query)
        print(f"Adaptive alpha: {self.alpha:.2f}")

        return self.hybrid_search(query, top_k)

Integration with Vector Databases

Implementing hybrid search with Chroma:

import chromadb
from chromadb.config import Settings

class ChromaHybridSearch:
    def __init__(self, collection_name: str = "hybrid_docs"):
        """Initialize Chroma client with hybrid search support."""
        self.client = chromadb.Client(Settings(
            anonymized_telemetry=False,
            allow_reset=True
        ))

        # Create or get collection
        self.collection = self.client.get_or_create_collection(
            name=collection_name,
            metadata={"hnsw:space": "cosine"}
        )

    def add_documents(self, documents: List[str], ids: List[str]):
        """Add documents to the collection."""
        self.collection.add(
            documents=documents,
            ids=ids
        )

        # Build BM25 index
        tokenized_docs = [word_tokenize(doc.lower()) for doc in documents]
        self.bm25 = BM25Okapi(tokenized_docs)
        self.documents = documents

    def hybrid_query(self, query: str, alpha: float = 0.5, top_k: int = 10):
        """Perform hybrid search combining Chroma vector search with BM25."""
        # Vector search using Chroma
        vector_results = self.collection.query(
            query_texts=[query],
            n_results=top_k * 2
        )

        # BM25 search
        tokenized_query = word_tokenize(query.lower())
        bm25_scores = self.bm25.get_scores(tokenized_query)

        # Normalize and combine
        combined_scores = {}

        # Add vector results
        for idx, (doc_id, distance) in enumerate(zip(
            vector_results['ids'][0],
            vector_results['distances'][0]
        )):
            doc_idx = int(doc_id)
            # Convert distance to similarity (assuming cosine distance)
            similarity = 1 - distance
            combined_scores[doc_idx] = (1 - alpha) * similarity

        # Add BM25 results
        normalized_bm25 = (bm25_scores - np.min(bm25_scores)) / (
            np.max(bm25_scores) - np.min(bm25_scores) + 1e-10
        )

        for idx, score in enumerate(normalized_bm25):
            if idx in combined_scores:
                combined_scores[idx] += alpha * score
            else:
                combined_scores[idx] = alpha * score

        # Return sorted results
        sorted_results = sorted(combined_scores.items(), key=lambda x: x[1], reverse=True)
        return [(self.documents[idx], score) for idx, score in sorted_results[:top_k]]

Query Expansion for Better Recall

from typing import Set

class QueryExpandedSearch(HybridSearchEngine):
    def expand_query(self, query: str) -> str:
        """
        Expand query with synonyms and related terms.
        In production, use WordNet, custom dictionaries, or LLM-based expansion.
        """
        # Simple expansion rules (use proper NLP libraries in production)
        expansions = {
            "ml": "machine learning",
            "ai": "artificial intelligence",
            "dl": "deep learning",
            "nlp": "natural language processing"
        }

        expanded_terms = [query]
        query_lower = query.lower()

        for abbr, full in expansions.items():
            if abbr in query_lower:
                expanded_terms.append(query_lower.replace(abbr, full))

        return " ".join(expanded_terms)

    def search_with_expansion(self, query: str, top_k: int = 10):
        """Perform hybrid search with query expansion."""
        expanded_query = self.expand_query(query)
        print(f"Expanded query: {expanded_query}")
        return self.hybrid_search(expanded_query, top_k)

Evaluation and Optimization

Measuring Retrieval Performance

Key metrics for evaluating hybrid search:

Metric Formula Interpretation
Precision@K relevant docs in top KK\frac{\text{relevant docs in top K}}{K} Accuracy of top results
Recall@K relevant docs in top Ktotal relevant docs\frac{\text{relevant docs in top K}}{\text{total relevant docs}} Coverage of relevant docs
MRR 1Qi=1Q1ranki\frac{1}{|Q|} \sum_{i=1}^{|Q|} \frac{1}{\text{rank}_i} Average reciprocal rank
NDCG@K DCG@KIDCG@K\frac{DCG@K}{IDCG@K} Ranking quality with graded relevance

Where MRR (Mean Reciprocal Rank) measures how quickly users find relevant results, and NDCG (Normalized Discounted Cumulative Gain) accounts for graded relevance scores.

Evaluation Framework

from typing import List, Dict
import numpy as np

class RetrievalEvaluator:
    @staticmethod
    def precision_at_k(retrieved: List[int], relevant: List[int], k: int) -> float:
        """Calculate precision at K."""
        retrieved_k = retrieved[:k]
        relevant_set = set(relevant)
        return len([doc for doc in retrieved_k if doc in relevant_set]) / k

    @staticmethod
    def recall_at_k(retrieved: List[int], relevant: List[int], k: int) -> float:
        """Calculate recall at K."""
        if len(relevant) == 0:
            return 0.0
        retrieved_k = retrieved[:k]
        relevant_set = set(relevant)
        return len([doc for doc in retrieved_k if doc in relevant_set]) / len(relevant)

    @staticmethod
    def mrr(retrieved: List[int], relevant: List[int]) -> float:
        """Calculate Mean Reciprocal Rank."""
        for rank, doc in enumerate(retrieved, start=1):
            if doc in relevant:
                return 1.0 / rank
        return 0.0

    @staticmethod
    def evaluate_search(search_engine, queries: List[str], 
                       ground_truth: List[List[int]], k: int = 10) -> Dict:
        """Evaluate search engine on multiple queries."""
        precisions, recalls, mrrs = [], [], []

        for query, relevant_docs in zip(queries, ground_truth):
            results = search_engine.hybrid_search(query, top_k=k)
            retrieved_docs = [idx for idx, _ in results]

            precisions.append(RetrievalEvaluator.precision_at_k(retrieved_docs, relevant_docs, k))
            recalls.append(RetrievalEvaluator.recall_at_k(retrieved_docs, relevant_docs, k))
            mrrs.append(RetrievalEvaluator.mrr(retrieved_docs, relevant_docs))

        return {
            "precision@10": np.mean(precisions),
            "recall@10": np.mean(recalls),
            "mrr": np.mean(mrrs)
        }

# Example evaluation
queries = ["Python 3.11 walrus operator", "transformer attention mechanism"]
ground_truth = [[0, 1, 5], [3, 4]]  # Relevant document indices for each query

metrics = RetrievalEvaluator.evaluate_search(search_engine, queries, ground_truth)
print(f"Metrics: {metrics}")

Alpha Optimization

Find the optimal alpha value for your dataset:

def optimize_alpha(search_class, documents: List[str], 
                   queries: List[str], ground_truth: List[List[int]],
                   alpha_range: np.ndarray = np.arange(0, 1.1, 0.1)):
    """
    Grid search to find optimal alpha value.

    Returns:
        best_alpha: Optimal alpha value
        results: Performance metrics for each alpha
    """
    results = []

    for alpha in alpha_range:
        engine = search_class(documents, alpha=alpha)
        metrics = RetrievalEvaluator.evaluate_search(engine, queries, ground_truth)
        results.append({"alpha": alpha, **metrics})
        print(f"Alpha: {alpha:.1f} | Precision: {metrics['precision@10']:.3f} | "
              f"Recall: {metrics['recall@10']:.3f} | MRR: {metrics['mrr']:.3f}")

    # Find best alpha by MRR
    best_result = max(results, key=lambda x: x['mrr'])
    return best_result['alpha'], results

# Run optimization
# best_alpha, all_results = optimize_alpha(HybridSearchEngine, documents, queries, ground_truth)
# print(f"\nOptimal alpha: {best_alpha}")

Production Considerations

Performance Optimization

Indexing strategies:

  • Pre-compute embeddings: Store embeddings in database to avoid re-encoding
  • Batch processing: Encode documents in batches for better GPU utilization
  • Approximate nearest neighbors: Use FAISS or Annoy for large-scale vector search
  • BM25 index caching: Serialize BM25 index to disk for faster loading
import pickle
import faiss

class OptimizedHybridSearch:
    def save_index(self, filepath: str):
        """Save BM25 and vector indices to disk."""
        index_data = {
            'bm25': self.bm25,
            'embeddings': self.doc_embeddings,
            'documents': self.documents
        }
        with open(filepath, 'wb') as f:
            pickle.dump(index_data, f)

    def load_index(self, filepath: str):
        """Load pre-built indices from disk."""
        with open(filepath, 'rb') as f:
            index_data = pickle.load(f)

        self.bm25 = index_data['bm25']
        self.doc_embeddings = index_data['embeddings']
        self.documents = index_data['documents']

    def build_faiss_index(self):
        """Build FAISS index for fast approximate search."""
        dimension = self.doc_embeddings.shape[1]
        self.faiss_index = faiss.IndexFlatIP(dimension)  # Inner product (cosine)

        # Normalize embeddings for cosine similarity
        normalized = self.doc_embeddings / np.linalg.norm(
            self.doc_embeddings, axis=1, keepdims=True
        )
        self.faiss_index.add(normalized.astype('float32'))

Scaling to Large Document Collections

Collection Size BM25 Strategy Vector Strategy Fusion Method
< 10K docs In-memory BM25 In-memory vectors Weighted/RRF
10K-100K docs Elasticsearch/BM25 FAISS/Annoy RRF
100K-1M docs Elasticsearch FAISS with IVF Two-stage retrieval
> 1M docs Distributed search Sharded vector DB Approximate RRF

Two-Stage Retrieval for Scale

class TwoStageHybridSearch:
    def __init__(self, documents: List[str], stage1_k: int = 100, stage2_k: int = 10):
        """
        Two-stage retrieval: fast first pass, accurate second pass.

        Args:
            stage1_k: Number of candidates from first stage (BM25)
            stage2_k: Final number of results after re-ranking
        """
        self.hybrid_engine = HybridSearchEngine(documents)
        self.stage1_k = stage1_k
        self.stage2_k = stage2_k

    def search(self, query: str):
        """Perform two-stage hybrid search."""
        # Stage 1: Fast BM25 retrieval for candidates
        bm25_candidates, _ = self.hybrid_engine.search_bm25(query, top_k=self.stage1_k)

        # Stage 2: Re-rank candidates with vector search
        query_embedding = self.hybrid_engine.encoder.encode([query])[0]

        candidate_scores = []
        for idx in bm25_candidates:
            doc_embedding = self.hybrid_engine.doc_embeddings[idx]
            similarity = np.dot(doc_embedding, query_embedding) / (
                np.linalg.norm(doc_embedding) * np.linalg.norm(query_embedding)
            )
            candidate_scores.append((idx, similarity))

        # Return top-k after re-ranking
        return sorted(candidate_scores, key=lambda x: x[1], reverse=True)[:self.stage2_k]

Real-World Use Cases

Use Case 1: Technical Support Documentation

Scenario: Customer searches for “error 404 authentication failed”

  • BM25: Finds exact error codes and technical terms
  • Vector: Understands “authentication failed” relates to login issues
  • Hybrid: Returns both exact error documentation AND related troubleshooting guides

Scenario: Query “contracts signed in California after 2020”

  • BM25: Exact matching for “California” and “2020”
  • Vector: Semantic understanding of “contracts” and “signed”
  • Hybrid: Precise filtering with semantic relevance

Scenario: “async function retry mechanism python”

  • BM25: Matches “async”, “function”, “retry”, “python” literally
  • Vector: Understands the concept of retry patterns
  • Hybrid: Finds exact code implementations with relevant patterns

Troubleshooting Common Issues

Problem Cause Solution
Vector search dominates Alpha too low Increase alpha to 0.6-0.7
Missing exact matches Pure vector search Add BM25 or increase alpha
Slow retrieval Large corpus, no indexing Use FAISS, cache indices
Poor ranking Unnormalized scores Ensure proper score normalization
Out of memory Full corpus in RAM Use disk-based indices (Elasticsearch, Milvus)
Inconsistent results Different tokenization Standardize preprocessing

Conclusion

Hybrid search represents a pragmatic approach to RAG retrieval, combining the precision of lexical matching with the flexibility of semantic understanding. By implementing BM25 and vector search together, you can achieve:

Key Takeaways:
20-40% improvement in retrieval accuracy over single-method approaches
Better handling of technical terms, acronyms, and exact phrases
Flexible tuning through alpha adjustment for domain-specific needs
Production-ready with proper indexing and caching strategies

Start with a simple weighted fusion (alpha = 0.5), evaluate on your specific dataset, and optimize alpha based on your query patterns. For technical domains, lean toward BM25 (alpha = 0.6-0.7); for conceptual queries, favor vector search (alpha = 0.3-0.4).

Remember: The best retrieval strategy depends on your data and queries. Always measure performance with real user queries and iterate based on metrics like MRR and NDCG. Hybrid search isn’t a silver bullet, but it’s a robust foundation that handles diverse query types more reliably than either method alone.

Implement the basic version first, measure improvements, then gradually add advanced features like dynamic weighting, query expansion, and two-stage retrieval as your needs grow. The code examples in this guide provide a solid starting point for production RAG systems.

Did you find this helpful?

☕ Buy me a coffee

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *

TODAY 396 | TOTAL 2,619